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The eikonal method is used to estimate the double scattering corrections to the differential cross sections 
for high-energy diffraction scattering from deuterons. By inverting the Fourier-Bessel transform the cor
rection is expressed in terms of the amplitudes for scattering from free nucleons. Numerical estimates are 
made for the case of proton-deuteron scattering by assuming simple forms for the nucleon-nucleon scattering 
amplitudes and the deuteron form factor: Corrections to the differential cross sections are about — 6% in the 
forward direction and increase in magnitude with increasing momentum transfer. 

I. INTRODUCTION 

BECAUSE of the difficulty of performing experi
ments with neutrons beams,1 considerable work 

has been done with the aim of obtaining neutron cross 
sections from experiments using deuteron targets. 
Since the deuteron is loosely bound, it does indeed 
provide what is close to a free neutron target, but this 
simple picture is, unfortunately, good only up to a 
point. Several authors2"-4 have used the impulse approxi
mation as a basis for a more reliable description of 
scattering from deuterons, while Glauber5,6 has used 
the eikonal method to estimate the effects of double 
or "shadow" scattering upon the total cross section at 
high energies. 

In this paper we discuss the extension of the work of 
Glauber to differential cross sections at energies high 
enough that the free-neutron and -proton cross sections 
are dominated by a narrow diffraction peak in the 
forward direction.7 Under these conditions, the Fourier-
Bessel transform used by Glauber can be inverted8,9 

and the amplitude for scattering from deuterons ex
pressed directly in terms of thefree-nucleonamplitudes.9a 

* Supported in part by the U. S. Office of Naval Research. 
1 See, however, the recent work of H. Palevsky and his co

workers : H. Palevsky, J. A. Moore, R. L. Stearns, H. R. Muether, 
R. J. Sutter, R. E. Chrien, A. P. Jain, and K. Otnes, Phys. Rev. 
Letters 9, 509 (1962); H. R. Muether, R. L. Stearns, R. E. Chrien, 
J. L. Friedes, R. J. Sutter, K. Otnes, and H. Palevsky, Bull. Am. 
Phys. Soc. 9, 94 (1964); J. L. Friedes, R. E. Chrien, S. 
Mughabghab, V. W. Myers, R. J. Sutter, and H. Palevsky, ibid. 
9, 94 (1964). 

2 A. Everett, Phys. Rev. 126, 831 (1962). 
3 A. Cromer, Phys. Rev. 129, 1680 (1963). 
4 H . N. Pendleton, Phys. Rev. 131, 1883 (1963). References to 

earlier papers can be found here and in Refs. 2 and 3. 
5 R. J. Glauber, Phys. Rev. 100, 242 (1955). 
6 R . J. Glauber, Lectures in Theoretical Physics (Interscience 

Publishers, Inc., New York, 1959), p. 315. 
7 The narrow forward diffraction peak seems to be a universal 

property of cross sections at high energy. See, for example, the 
series of experiments reported by K. J. Foley, S. J. Lindenbaum, 
W. A. Love, S. Ozaki, J. J. Russell, and L. C. L. Yuan, Phys. Rev. 
Letters 10, 376, 543 (1963); 11, 425, 503 (1963). 

8 R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766 
(1962). 

9 B. M. Udgaonkar and M. Gell-Mann, Phys. Rev. Letters 8, 
346 (1962). 

9a Note added in proof. This result has previously been obtained 
by V. Franco and R. J. Glauber. See R. J. Glauber, International 
Conference on Nuclear Forces and the Few-Nucleon Problem (Per-
gamon Press, Inc., New York, 1960), Vol. I, p. 233; V. Franco 

The phases of these amplitudes are, of course, unknown 
except in the forward direction where they can be 
determined from experiments by the use of the optical 
theorem.10 We expect elastic scattering amplitudes to 
become more and more nearly pure positive imaginary 
as the energy increases and more and more inelastic 
channels open, but there seems to be some evidence for 
nonnegligible real parts10 even at the highest energies 
presently available. In any case, once the phases are 
settled—by theory, experiment, or conjecture—the 
free-neutron differential cross section near the forward 
direction can be calculated from the deuteron and 
proton differential cross sections using the relations 
which we obtain below. 

The scheme of the paper is as follows: In Sec. I I we 
define the amplitudes with which we work and state the 
kinematical conditions which we assume in order that 
subsequent approximations be valid. For completeness 
we give the arguments leading to the Glauber formula 
in Sec. I l l and, by using the inverse Fourier-Bessel 
transformation, eliminate the eikonal function in favor 
of the free-neutron and proton scattering amplitudes. 
In order to clarify the approximations contained in 
the resulting formula we give an alternative derivation, 
based upon the impulse approximation, in Sec. IV. 
Expressions for the total cross section and various 
differential cross sections which result from the formula 
obtained in I I I and IV are given in Sec. V, together 
with an estimate of the double scattering correction 
to the angular distribution of protons scattered elasti-
cally and quasielastically from deuterons. Finally, in 
Sec. VI, we discuss our results and suggest experimental 
and theoretical tests of our approximate formulas. 

II. KINEMATICS 

We shall consider processes in which a fast incident 
particle strikes a deuteron and suffers a small deflection, 
either leaving the deuteron bound or raising its internal 
energy slightly so that the neutron and proton emerge 

and R. J. Glauber, Bull. Am. Phys. Soc. 8, 366 (1963); and 
V. Franco, thesis, Harvard University (unpublished). The author 
would like to thank Professor Glauber for calling this work to his 
attention. 

10 See the third paper cited in Ref. 7. This paper contains many 
references to earlier work. 
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in a low-energy scattering state. To be more specific, 
we shall consider the amplitudes 

(p';qi',q2 ' |r |q,P) 
or 

<p';P' |r |p,P>, 

where p and p' are the initial and final momenta of the 
fast incident particle, P and P' are the initial and final 
(for elastic scattering) deuteron momenta, and q/ and 
q% are the final proton and neutron momenta (for the 
inelastic case). We can treat the elastic and inelastic 
cases simultaneously by writing the amplitudes as 

<p ' ;F, / | : r |p ;P>, 

where P / =q/+q2 / in the inelastic case. The index / 
determines whether the final state contains a deuteron 
or a neutron and proton in an outgoing scattering state 
with relative momentum 2k=q/—q2'. 

To simplify our calculations we shall ignore the spins 
of all the particles involved. Our results may still have 
some relation to reality, however, since it is likely that 
any spin dependence of the forces between particles 
tends to vanish at high energies11: The diffraction peak 
must be composed of particles coherent with the inci
dent beam, and thus, in particular, having the same 
spin. 

We shall generally work in the laboratory system, 
where P=0 and P'=— A = p—p'. The approximations 
we shall make will depend upon the following con
ditions : 

P',k<£ni, (1) 

A«p~p', (2) 
and 

apy>l, (3) 

where m is the nucleon mass and a is the range of the 
force between the incident particle and the nucleons. 
In other words, we require that the neutron-proton 
system be nonrelativistic and that the incident particle 
suffers only small changes in direction and energy during 
the collision. Because high-energy elastic scattering 
seems to be universally dominated by a diffraction peak, 
it seems reasonable to hope that a large fraction of 
events will satisfy these conditions, provided the 
incident energy is high enough. For these events the 
conservation of energy requires 

E{p)-E(pf) « e + ( 4 ^ ) " ^ + w 1 * 2 , (4) 

where E(p) = (m2+p2)112 and e= 2m—m& is the deuteron 
binding energy. This relation can be used to show that, 
under the conditions (l)-(3), 

p-A«*A, (5) 

so that A is nearly perpendicular to p. 
Since we shall work in the laboratory system it is 

11 H. Steiner, J. Arens, F. Betz, O. Chamberlain, B. Dieterle, 
P. Grannis, M. Hansroul, C. Schultz, G. Shapiro, L. Van Rossum, 
and D. Weldon, Bull. Am. Phys. Soc. 9, 95 (1964). 

convenient to define an amplitude Ff(p,A), given by 

Ff(p,A) = (^)-\2E{p)2E(p')yi* 
X ( p ' ; A , / | r | p ; 0 ) , (6) 

such that the differential cross section in the laboratory 
is simply 

daf(pA)/dV(p')=\Ff(PA)\2- (7) 

Of course, if the index / refers to a neutron-proton 
scattering state, it would be more precise to write 

dak(p,A)/dW)d*k= (27r)-3|FkfeA)|2. (8) 

Our aim is to write the amplitude F/(p,A) in terms 
of the two-particle amplitudes 

for the elastic scattering from neutrons (i=n) and 
protons (i=p). It is again convenient to introduce 
"laboratory" amplitudes /*(/>, A): 

Mp,A)= (4x)-1(2£(^)2JE(i>'))1/2(p',q/|r|p,q<>, (9) 

with the laboratory differential cross section given by 

^ (p ,A) /da (p ' )= | / ^ ,A) | » . (10) 

Finally, for future reference, we point out that, in terms 
of fi(p,A) and Ff(p,A)> the optical theorem reads 

Imfi(pfi)=(^)~lpcxi>T(p) 
and 

ImFd(fcO)=(4*)-> r(#, (11) 

where <Ti,T{p) and (?T(P) are the total cross sections for 
scattering from free nucleons and deuterons, respec
tively. 

III. EIKONAL METHOD 

Assuming the two-particle differential cross sections 
to be dominated by a narrow forward peak, we can use 
the well-known Fourier-Bessel representation for the 
two-particle amplitudes5,6,8'9: 

fi(p,A) = 2pf bdbJ0(AbJTi(p,b) 
Jo 

= {2TT)-12P fd2b exp(ib- A)Ti(p,b)*, (12) 

where Vi(p,b) is given by the inverse transformation 

I W ) = (2P)-1 [ AdAJ0(M)fi(pA) 
Jo 

= (2TT)-1(2^)-1 [d?A exp(- ib . A)/,-(fcA). (13) 

In (12) and (13) b is the impact parameter: The vector 
b lies in a plane perpendicular to K P + P O and may be 
pictured as the vector from the origin of the potential 
to the classical trajectory of the scattered particle. 
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Insofar as the classical picture is valid, each value of b 
corresponds to the angular momentum 

l(p,b) = pCMb-h (14) 

We have chosen the normalization of Ti(pjb) 
such that 

Ti(p,b) = (2t)-1[exp(iX i(#^))-1], (15) 
where 

X , . ( ^ ) « 2 5 0 W ) ] (16) 

is the eikonal function and 8i(p,l) is the Zth partial-wave 
phase shift (in general complex) for elastic scattering 
from the particle i. In a potential theory, under the 
conditions specified in Sec. II, Xi(p,b) is just the integral 
of the potential along the classical path of the incident 
particle.6 

In considering the scattering from a deuteron we 
shall neglect the motion of the neutron and proton 
during the brief period of interaction with the fast-
moving incident particle, and assume them fixed at 
positions rn=— | r and r p = | r , respectively, where r is 
their relative coordinate. Then, in analogy with the re
sult obtained in potential theory,6 we shall assume the 
scattering amplitude to be given by 

F(pA; r) = {2^2p f'fflb exp(fb. A)T(p,b; r ) , (17) 

where 

r(£,b; r)= (2i)-l[exv(iXn(p,bn)+iXp(p,bp))-l~l 
= Tp(p,bp)+Tn(p,bn)+2irp(p,bp) 

XTn(pfin). (18) 
In (18) 

and 
b„=b+£rx, (19) 

where 
r1=r-r2('-P)P (2°) 

is the projection of r onto a plane perpendicular to p. 
This expression for F(p,A;r), which follows from 

the assumption that the phase change produced by the 
neutron and proton when they are bound together in 
the deuteron is just the sum of the phase changes they 
would produce individually, would certainly be quite 
accurate in a potential theory if conditions (l)-(3) are 
satisfied. In a more realistic picture, however, the 
interactions between the incident particle and the 
nucleons are determined by the cloud of virtual particles 
surrounding the nucleons' cores, and these clouds might 
reasonably be expected to be distorted when the 
nucleons are brought together. If this distortion is 
significant one can hardly hope that (18) is correct. 
Because the deuteron has such an open structure, 
however, the nucleon clouds overlap only slightly, and 
(18) might well give a good approximation to T(p,b; r). 

To obtain the function F/(p,A)7 defined in Sec. II, 
we must average F(p,A; r) over r. Again guided by 

potential theory we shall make the reasonable assump
tion that 

Ff(PA)= fd*r+f*(r)F(p,A; r)*„(0), (21) 

where 1/7 (r) is a two-nucleon wave function. From 
Eqs. (21), (18), (17), (15), and (13) we obtain, after 
some straightforward manipulation, 

Ff(p,A) = Pt(&±)U(PA)+Pf(-h*>)f»(PA) 

+ ; ( 2 ^ ) - i (<PA'Pf{\')fv{p, | A '+JA |) 

X / „ ( f c | A ' - i A | ) , (22) 
where12 

P/(q) s [dtyf*{r) exp(iq.r)^(12). (23) 

It should be noted that in (22) the interaction of the 
incident particle with the individual nucleons enters 
only via the scattering amplitudes fi(p,A). Potential 
theory is used only to describe the low-energy neutron-
proton system, and in this context it should be quite 
adequate. 

IV. IMPULSE APPROXIMATION 

While the argument given in Sec. I l l makes Eq. (22) 
rather plausible, it was based mainly upon the analogy 
with potential theory and does not make very clear 
just what has been left out of the approximate ex
pression. It therefore seems useful to give an alternative 
"derivation" of (22) which makes somewhat clearer 
the nature of the approximation. 

Because the deuteron is loosely bound it may be a 
good approximation to neglect the forces which hold 
it together (e.g., due to the exchange of pions) during 
the period of interaction with the incident particle. If 
so, we may use the impulse approximation to obtain 
the following expression for the amplitude Ff(p,A): 

{^)[_2E{p)2E{p')-]-ll2Ff(pA)={v'; A , / | r | P ) o) 
« £ Z (A,/|qs/,qB ')(p';q1/,q» /|r|p;qp,qB> 

X<qp,qn|0,<*>, (24) 

where lqp,qn) is a state containing two free nucleons. 
The quantity (qp,qn|P,/) is simply related to <p/, the 
two-nucleon wave function in momentum space for the 
state / : 

<qP,qw|P,/>= (27r)88»(P-qp-qw)^/[i(qp-qn)] (25) 

so that (24) may be written 

Ff(pA)=(^)-^2E(p)2E(p')Ji* E ^/*(k') 
k'.k 

X#;*A+k ' , §A-k ' | r | p ;k , -k>«> d ( f t ) . (26) 
12 The form factors p/(q) also occur in formulas describing the 

scattering of electrons and photons from deuterons. See, for 
example, L. Durand, Phys. Rev. 123, 1393 (1961) and J. I. 
Friedman and H. W. Kendall, ibid. 129, 2802 (1963). 
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Because the two-nucleon wave functions are large only 
for values of k and k'<£p, the matrix element 

(v'i<lp,<ln\T\p;qp,qn) 

is required only when it is quite near the energy shell. 
We shall, in fact, assume that the amplitudes from 
which we construct it can be well approximated by 
their on-shell values. 

To regain formula (22) we need take only those 
contributions to (p'; q/,qr/1 T \ p,qP,qn) which corre
spond to the diagrams shown in Fig. 1. The contribution 
from Fig. 1 (a) is 

(2T)W(qn'-cLn)(4r)\:2E(p)2E(p')^r^fp(p!A) (27) 

and that from Fig. 1(b) just (27) with the subscripts 
n and p interchanged. Diagrams 1 (c) and 1 (d) together 
give 

(^K2E(p)2E(p')y^fp(p,Ap)fn(p,An) 

Xl<y-(p+qp-qp'Y-url 

+ (M2- (P+qn-qn'y-ie)-ll, (28) 
where 

A p = i A + k - k ' , 

A „ = § A - k + k ' , (29) 

and ix is the mass of the incident particle. To lowest 
order in the small momenta the first and second 
denominators in (28) are just 2p»(k—k')—ie and 
— 2p« (k—k') — ie. Their sum is thus approximately 
27rt'5(2p-(k—k')), requiring that the vector k—k' be 
perpendicular to p. 

Assembling our results we obtain 

Ff(PA) = Z ^ * ( k ' ) [ ( 2 x ) ^ ( ! A + k - k ' ) / ^ , A ) 
k,k' 

+ ( 2 * ) W ( i A - k + k ' ) / . ( M ) 

+ 2 « 5 ( 2 p - (k-k'))4x/P(/>,A*>)/»(M«)><* W . (30) 

Using 
E «>/*(k-q)*>d(k) = p,(q) , (31) 

it can easily be shown that this is equivalent to (22). 

V. CROSS SECTIONS 

The simplest result to be obtained from formula (22) 
is a consequence of the optical theorem. Using Eq. 
(11) we find 

(Tr(p) = 0'p,T(p) + 0'n,T(p) 

+Re |^ (27 r^ )~ 1 ^ 2 A / p . (A0^(^ ,A0A(^ J A0] , (32) 

which corresponds to the result obtained by Glauber.5 

If we follow him in assuming that fp(p,A') and fn(p,Af) 
are pure positive imaginary and change slowly with A' 
compared to pd(A'), then the last term on the right-hand 

p — ^ 

(0) (b) 

(c) (d) 

FIG. 1. Diagrams giving the single and double scattering con
tributions to the scattering from two free nucleons. The dashed 
line represents the incident particle, the solid lines the two 
nucleons. 

side of (32) gives the well-known "shadow" correction, 

-<Tn,TTPA^)-l{^)d, (33). 
where 

(r~2)d= \dHr~m{r). (34) 

For proton-deuteron above 1 BeV the correction, in this 
approximation, amounts to about 6% of <TT, and its 
neglect would therefore produce an error of about 12% 
in a determination of an>T from <TT and OTPIT. 

The differential cross section for elastic scattering is, 
of course, given by (7) with f=d: 

dod(p,A)/dQ=\Fd(p,A)\\ (35) 

where 

Fd(pA)=P*(£A)lfp(PA)+f«(PA)l 

+i{2irp)-'jd^Pd{Af)fv{pj | A ' + | A |) 

Xfn(p, | A ' - i A | ) . (36) 

Because the amplitudes fp(p,A) and fn(p,A) fall off 
more slowly with increasing A than does pd(A) (at 
least in the energy range available for experiments at 
present), the relative importance of the correction term 
will increase with increasing A. Of course here, and 
below, we must remember that the range of A where we 
expect (22) to be valid is limited by condition (2). 

The complete differential cross section for inelastic 
scattering is similarly obtained by substituting the 
expression for Fk(p,A) given by (22) into Eq. (8). 
There seems little point in writing out this complicated 
expression here. A simpler and perhaps more useful 
expression can be obtained by integrating over the 
direction of the vector k and replacing the variable 
| k | by p', the momentum of the scattered particle. 
The resulting expression, which can be used to describe 
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an experiment in which only the direction and momentum of the scattered particle are observed, is 

da/dttdp' = ( 2 T T ) - 3 ( 2 E ( ^ ) ) - % ^ [dttk\Fk(pA)\2 

= (2ir)-%2E(pf)r'mpfk^\fp(pA)\2R(k^ 

-2 Im[fp*(pA)(2irpyifd*A'R(k; |A,A')/p(#, | A'+jA|)/»(#, | A ' - j A | ) J 

+h(2Trp)->JdZA'd*A"R(k; A',A")/p*& | A'+iA|)/n*(fc | A ' - | A | ) 

X/p(#, | A"+iA|)/»(fc | A"-l-A|)+same with »<-• p\ , (37) 

where the function13 i£(&;a,b) is determined by the cross section: 
properties of the low-energy neutron proton system. da r dzk 

-(PA)^ / ~~-\Fk(pA)\2+\Fd(pA)\2, (40) 
r dtt J (2TT)3 

R{k] a,b)= / dihpk (a)pk{p) applying to experiments in which only the direction of 
the scattered particle is measured. The kinematics 

= 4TTL [2l+l)Pi(&'b)pk
(l)(a)*Pkil)0>), (38) then allow k to take a large range of values, only the 

i smallest of which satisfy the conditions necessary for 
our approximations. We expect, however, that the 

W l t n amplitude Fk(p, A) will decrease rapidly for k2>me+A2 

1 /.i because of the factors Pk(A). (It should be remembered 
pk(i)(a) = - I d(d'k)Pi(a-k)pk(a). (39) that, for small k and A, A is determined mainly by the 

2 J-i direction of p' with only a weak dependence upon k.) 
If this rate of decrease is rapid enough we may, without 

The functions p*<*>, generalized to include the nucleon s e r i o u s e r r o r ? e x t e n d t h e r a n g e of k integration to 
spin, have been studied extensively in connection with i n n m t y and use (8) throughout this range. The closure 
inelastic electron deuteron scattering14; many of these reiation for the neutron-proton states then gives 
results can be directly applied to the present problem. . ^ 

Under certain conditions a much simpler result can / Pk*(a)pk(b)+p/(a)p«s(b) = pd(|a—b|), (41) 
be obtained. Consider the quantity obtained by inte- J (27r)3 

grating (8) over dzk and adding the elastic differential so that (40) becomes 

da 
-(PA)=\fv(PA)\2+^U/(PA)fn(PA)~}Pd(A) 
dtt 

- 2 Im[/p*(#,A)(2ir#)-^(PA/pd(| A ' - i A | ) / p ( p , | A'+§A|)/n(fc | A ' - j A | ) ] 

+ K 2 ^ ) - ^ W ^ A V ( | A ' - A - | ) / P * ( ^ |A'+jA|)/»*(#, |A"WA|) 

XfP(p, |A"+ iA | ) / n (& |A 'WA| )+sa ine with »<->#. (42) 

The main difficulty in experimental applications of this with the scattered particle, a neutron and a proton 
formula will be to ascertain that only those final states (perhaps bound), and no additional particles, are 

recorded. 
18 The function i?(£;a,b) is essentially the Fourier transform of To obtain numerical estimates of the double scat-

a space-time correlation function for the deuteron. See, for t rf c o r r e c t i o n i n ( 3 2 ) (35) a n d (42), t he functions 
example, L. Van Hove, Phys. Rev. 95, 249 (1954). & v , A\ \ , -^ 

" See the first reference listed in 12. fp(PA)> fn(PA)> a n d Pd(A) are needed. For th i s 
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purpose the forms 

fi(pA)-iAi(p) exp[~a,-(^)A2] 
and 

(43) 

(44) pd(A) = exp(-adA
2) 

should be adequate, provided the parameters Ai(p) 
and ai(p) are chosen to fit the low-momentum transfer 
experimental data for scattering from free nucleons, 
and a reasonable value is used for ad. For simplicity 
we shall assume below that A{(p) is a positive real 
number, which then must be proportional to the total 
cross section: 

Ai(p)=(4n)-1p<n.r(p), (45) 

but an imaginary part could be easily added. We shall 
use a value of 1.64 F2 for ad; as shown in Fig. 2 this 
gives a reasonable fit to pd(A) in the region where it is 
large. 

Using these simple approximate forms for the func
tions fi(pA) and Pd(A), the integrations in (32), (35), 

I.Oi 

0.3| 
FIG. 2. Comparison of 

the repulsive core deu-
teron form factor, with °-6| 
the parameters given by 
Durand (see Ref. 12), 
with the Gaussian °-4l 

exp(—adk2), 

with ad = 1.64 F2. 

Goussion 

Repulsive Core-

0.2 0.4 0.6 0.8 
k ( F - l ) 

1.0 

and (42) can be easily done, giving 

aT(p) = ap,T(p)+crn,T(p)--(^Trat)-1<TPlT(p)(rn,T(p) , (46) 

dad 

dti 
- = Pd(iA) ( — ) + ( — ) 
in I L\dQ/ \dtt/ J 

fd<rp dan\
llA 

— ( I ((Tp,T(Tn,T)m 

\dtt dti/ 
X(8TOe)-1exp[-(4a i)-1(«p-«n)2A2][ , (47) 

and 

da d(Tp 

— = • [ l - o - W ) r ( 4 7 r a f ) - 1 e x p ( o ! r 1 « / A 2 ) ] 
dQ dU 

darn 

4 [ l -a - P ) T (47ro;0 _ 1 exp(ar 1 Q!n 2 A 2 ) ] 
d& 

/d<rp dan\
112^ 

\dti dtt) 
+ { - ~ ] l2pd(A)+aPtT(Tn,T(S7r)~2 

X (a^-ad 2 ) - 1 e x p ^ + a ^ ^ A 2 ) ] , (48) 

,\*rUncorrected 

FIG. 3. The cross section r* 
for elastic proton deuteron S 
scattering in the GeV range, b^» 
with (solid line) and with- *>\ *» 
out (dashed line) double ^ ^ 
scattering corrections. A is i?|c» 
the momentum transfer. "° 

A2 <r2) 

where 
at=ad+ap+an. (49) 

To illustrate these simplified formulas we choose 
parameters in rough agreement with presently available 
high-energy proton-proton and proton-neutron scat
tering data7: 

ap=cen=0.4F2 , 

Cj),r=^,r=40mb (50) 

(that an=ap is, of course, a conjecture). We then find 
a double scattering correction to <JT of —2.6 mb, or 
about —3%. This is somewhat smaller than Glauber's 
result, the difference arising because we here use some
what smaller values for aPtT and <rn,T and a different 
choice for pd(A). 

The double scattering corrections to the differential 
cross sections resulting from the parameters (50) are 
illustrated in Figs. 3 and 4. For elastic scattering the 
correction is about — 6% in the forward direction and 
increases in magnitude with increasing A2. (The curves 
at the larger values of A2 should not be taken too 

FIG. 4. The cross section 
for the sum of elastic and 
quasielastic proton-deu-
teron scattering in the GeV 
range with (solid line) and 
without (dashed line) 
double scattering correc
tions. A is the momentum 
transfer. 

A2 c r; 
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FIG. 5. A diagram 
which should be con
sidered in investi
gating corrections to 
formula (22). 

seriously since our approximate expression for the 
deuteron form factor is almost certainly too small there.) 
The integrated differential cross section, da/dti, also 
has a correction of about — 6% in the forward direction, 
and here too the magnitude of the relative correction 
increases with increasing A2, but only up to A2 ̂ 5 F~~2, 
where the last term in (48) begins to become significant. 

VI. DISCUSSION 

The results obtained above indicate that double 
scattering corrections to high-energy scattering from 
deuterons will be more important in the differential 
cross sections than in the total cross section, with larger 
effects at increasing momentum transfer. I t is not 
difficult to understand this increase: If there is only a 
single scattering, with momentum transfer A, then the 
internal momentum of the neutron-proton system is 
changed by A/2 and the free-particle scattering ampli
tude is that for momentum transfer A. For double 
scattering, on the other hand, the kinematics allow 
more freedom. Both the change in the internal mo
mentum and the momentum transfer argument for the 
free-particle amplitudes can cover a range of values. 
In particular, the change in internal momentum can 
always take value in the neighborhood of zero, so that 
the deuteron has a good chance of remaining bound for 
arbitrarily large values of A. Furthermore, the mo
mentum transfer arguments can both be in the neighbor
hood of A/2, so that if we assume the form (43) for the 
free-particle amplitudes we have a factor exp— A2/2 
rather than the exp—A2 which occurs in the single 
scattering term. Naturally, because of the nature of 
our approximations, we cannot use our results at large 
momentum transfers. They should serve to warn us, 
however, that the simple impulse approximation with
out multiple scattering corrections may be quite bad 
for large momentum transfers. 

The approximations which we made above to obtain 
the double scattering corrections should be valid under 
the conditions ( l ) -(3) . The argument leading to (22) 
is certainly not rigorous, though, and we would have 

more confidence in this result if it were verified experi
mentally. This is fortunately possible: As indicated in 
Glauber's paper,5 if we assume a charge-symmetric 
pion-nucleon interaction then the pion-neutron ampli
tudes are determined by the pion-proton amplitudes. 
Apart from the problem of phase, therefore, we have 
all the input data required to calculate pion deuteron 
cross sections at high energy from (22); the results can 
then be checked by comparing with experimental 
results. I t should be realized that a discrepancy does 
not necessarily invalidate our basic approach; there 
may be a strong spin dependence or a surprisingly rapid 
phase variation. These complications can, in principle, 
be included using the present approach, but more 
information on the free-particle scattering amplitude 
than is presently available would be required. We are 
further limited by our ignorance of the high-momentum 
components of the deuteron, but this should not produce 
serious errors as long as condition (1) is satisfied. 

We can also try to check the validity of our approxi
mations theoretically. I t should be possible to estimate 
corrections to the impulse approximation such as those 
originating from the diagram shown in Fig. 5. In dia
grammatic calculations such as this, however, the low-
energy and high-energy aspects of the problem, which 
we thus far have kept separate, apparently become 
thoroughly mixed. For example, the pion in Fig. 5 can 
be regarded as either the result of production in the 
high-energy collision or as one of the pions which are 
occasionally exchanged between the nucleons, producing 
the binding. I t therefore seems that for high-energy 
collisions corrections of this sort can be treated properly 
only by starting from a fully relativistic theory. In 
analogy with similar diagrams contributing to the 
electromagnetic form factor of the deuteron15 one 
expects a certain part of the contribution from the 
diagram of Fig. 5 to be accounted for by a good deuteron 
wave function; the difficulty is to separate this part 
from the remainder which constitutes a correction to 
the impulse approximation. 

In conclusion we should like to emphasize the useful
ness of experimental studies of high-energy elastic and 
quasielastic scattering from deuterium. These experi
ments have the potential of furnishing cross sections 
for scattering from neutrons and, in addition, may 
eventually provide a useful method for studying the 
deuteron, especially in the event the development of a 
relativistic theory of this bound state allows us to relax 
condition (1). 

15 F. Gross, Phys. Rev. 134, B405 (1964). 


